
batogb

Privacy in The
Blockchain Era

A soft introduction to zero knowledge proofs

Bogdan Batog

batogb

Simple Marketing Real Story
Email Marketing

● Provider had signed agreements from a large demographic base
● Would promote our services to relevant profiles

Asks:

● For our own full list of user emails, to be used as “suppression”

Alarm:

● We have to fully trust them with our data, have no means of verifying the
service was provided and we pay them

batogb

How We Protected Our Users Data
Email Marketing

● Provider had signed agreements from a large demographic base
● Would promote our services to relevant profiles

Solution: Send them a list of hashed email addresses

+ Our users emails are not disclosed
+ They can still “suppress” existing users
- Existing users are exposed

batogb

Hash Functions
Any function that can be used to map data of arbitrary size to fixed-size values.

Cryptographic hash function:

● Deterministic
● Quick to compute
● Preimage resistant
● Collision resistant

Source: Wikipedia

batogb

Enter Rock–paper–scissors
Game as a fair choosing method

Similar function as coin flipping

Not truly random

How do you do that online?

batogb

Commitment scheme
Cryptographic primitive that allows one to
commit to a chosen value (or chosen statement)
while keeping it hidden to others, with the ability
to reveal the committed value later.

Say Alice and Bob play Rock-Paper-Scissors.

1. Alice:
a. chooses v as her call
b. chooses a random R and then computes

h=hash(v||R)
c. sends h to Bob

2. Bob makes his call and reports it
3. Alice reveals what she commited to by

exposing both v and R
4. Bob verifies that v and R match the

commitment

batogb

Public Key Cryptography
Symmetric encryption:

A: coded_message = encrypt(message, key)

B: message = decrypt(coded_message, key) <<< same key

With public key cryptography, each entity has a pair of keys: one private and one
public. The private key is generated offline and it doesn’t need to be sent over the
wire at all.

A: coded_message = encrypt(message, private_key_a)

B: message = decrypt(coded_message, public_key_a)

batogb

Zero Knowledge Proofs

Wikipedia: “a method by which

one party (the prover) can prove to

another party (the verifier)

that they know a value x,

without conveying any information

apart from

the fact that they know the value x.”

batogb

Zero Knowledge Proofs - Simple Examples

1. The color blind person can be convinced that objects have different colors
even if they don’t see it

2. Prove the color of a card you picked from a playing cards pack

3. Where’s Wally?

batogb

batogb

Zero Knowledge Proofs
A sort of generalization of both hashes and public key cryptography.

Hashes → “proof of data”

Public key cryptography → “proof of private key ownership”

Zero Knowledge Proofs → “proof of computation”

Allows a Verifier to ascertain that the Prover executed a public/shared computation
over private data that returned a public/shared result and the risk of Prover
cheating is negligible.

batogb

Zero Knowledge Proofs
Key Properties

1. Completeness - if the statement is True, an honest Verifier will be convinced
by this fact

2. Soundness - a malicious Prover cannot convince the Verifier of a false
statement

3. Zero Knowledge - no other information except that the statement is True is
revealed to the Verifier

Verification DOES NOT mean recomputation! (unlike blockchain)

batogb

zk SNARKS
SNARK referring to “Succinct Non-interactive ARgument of Knowledge”

Elements of a zkSNARK:

1. (prover_key, verifier_key) := setup(circuit)

2. proof := generateProof(prover_key, inputs, circuit)

3. true/false := verifyProof(verifier_key, proof)

batogb

zk SNARKS

● short and non interactive proofs

● zero knowledge

● verification cost independent of computational complexity

● proof: 3 EC Points = 127 bytes

batogb

zokrates.github.io

ZoKrates is a toolbox for zkSNARKs on Ethereum

def main(private field a, field b) -> (field):

 field result = if a * a == b then 1 else 0 fi

 return result

batogb

zokrates.github.io
compile
./zokrates compile -i root.code

perform the setup phase
./zokrates setup

execute the program
./zokrates compute-witness -a 337 113569

generate a proof of computation
./zokrates generate-proof

export a solidity verifier
./zokrates export-verifier

batogb

Example: Confidential Transactions on Ethereum
Normally, an ERC20 token will hold:

mapping (address => uint256) balances;

And when a transfer is made, it must check:

balances[fromAddress] >= value

Source: https://media.consensys.net/introduction-to-zksnarks-with-examples-3283b554fc3b

batogb

Example: Confidential Transactions on Ethereum
In CT, we replace the balance with the hash of balance:

mapping (address => bytes32) balanceHashes;

What becomes private: balances and sent amounts.

And when a transfer is made, both sender and receiver must produce each a
SNARK:

batogb

Example: Confidential Transactions on Ethereum
function senderFunction(x, w) {
 return (
 w.senderBalanceBefore > w.value &&

 sha256(w.value) == x.hashValue &&

 sha256(w.senderBalanceBefore) ==
 x.hashSenderBalanceBefore &&

 sha256(
 w.senderBalanceBefore - w.value
) == x.hashSenderBalanceAfter
)
}

function receiverFunction(x, w) {

 return (

 sha256(w.value) == x.hashValue &&

 sha256(w.receiverBalanceBefore) ==

 x.hashReceiverBalanceBefore &&

 sha256(

 w.receiverBalanceBefore + w.value

) == x.hashReceiverBalanceAfter

)

}

batogb

batogb

Zero Knowledge Proofs - Applications

● No longer send plain text passwords over the wire, but proofs of password
hashes

● Proof of owning a document, without revealing its content
● Authentication
● Scale blockchains: move computation off-chain, have smart contracts only do

verification
● Confidential transactions
● Constant size blockchain: Coda Protocol - recursive composition of

zk-SNARKs

batogb

Thank you

Bogdan Batog

